THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) Solution to Midterm Examination

Tongou Yang and Yan Lung Li

1. Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) := \begin{cases} x^2, \text{ if } x \in \mathbb{Q} \\ 0, \text{ otherwise} \end{cases}$$

Show that f'(0) exists but f'(x) does not exist for any $x \neq 0$.

Proof. • We first show that f'(0) exists. (The term x^2 suggests that f'(0) = 0). Since f(0) = 0, it suffices to show that

$$\lim_{x \to 0} \frac{f(x)}{x} = 0$$

Let $\epsilon > 0$, and take $\delta := \epsilon$. For any $|x| < \delta$, if $x \in \mathbb{Q}$, then

$$\left|\frac{f(x)}{x}\right| = \left|\frac{x^2}{x}\right| = |x| < \epsilon.$$

If $x \notin \mathbb{Q}$, then

$$\left|\frac{f(x)}{x}\right| = \left|\frac{0}{x}\right| = 0 < \epsilon.$$

This proves that f'(0) = 0.

- Next we show that for $x \neq 0$, f'(x) does not exist. It is easier to show that f is not continuous at x, hence not differentiable at x. By the sequential criterion it suffices to exhibit a sequence x_n converging to x but $f(x_n)$ does not converge to f(x). We consider two cases.
 - $x \in \mathbb{Q} \setminus \{0\}$. In this case, $f(x) = x^2 \neq 0$. However, by density of irrational numbers, there exists a sequence $x_n \notin \mathbb{Q}$ so that $x_n \to x$. Thus $f(x_n) = 0 \to 0 \neq f(x)$. Hence f is discontinuous at x.
 - $x \notin \mathbb{Q}$. In this case, f(x) = 0. By density of rational numbers, take $x_n \in \mathbb{Q}$ so that $x_n \to x$. Thus $f(x_n) = x_n^2 \to x^2 \neq 0$, since $x \neq 0$. Hence f is discontinuous at x.

To conclude, f'(x) does not exist at $x \neq 0$.

- 2. Suppose f is differentiable on a bounded open interval (a, b).
 - (a) Show that if f is unbounded on the interval (a, b), then f' is also unbounded on (a, b).

- (b) Does the converse of part (a) hold?
- *Proof.* (a) We prove by contradiction. Suppose f' is bounded on (a, b). We have two different approaches to show that f is bounded on (a, b).
 - Method 1: Since f' is bounded on (a, b), let $M := \sup_{x \in (a,b)} |f'(x)| < \infty$. We show that f is Lipschitz continuous. Indeed, given a < x < y < b, since f is continuous on [x, y] and differentiable on (x, y), by the mean value theorem, there is some $z \in (x, y)$ so that

$$f(y) - f(x) = f'(z)(y - x).$$

But then

$$|f(y) - f(x)| = |f'(z)(y - x)| \le M|y - x|,$$

showing that f is Lipschitz continuous on (a, b). Then f is in particular uniformly continuous on (a, b). By the uniform extension theorem, f can be continuously extended to $\tilde{f} : [a, b] \to \mathbb{R}$ so that \tilde{f} is uniformly continuous. In particular, \tilde{f} is bounded on [a, b]. In particular, f is bounded on (a, b).

• Method 2: Fix an arbitrary $c \in (a, b)$. For any $x \in (c, b)$, since f is continuous on [c, x] and differentiable on (c, x), by the mean value theorem, there is some $z \in (c, x)$ so that

$$f(x) - f(c) = f'(z)(x - c).$$

But then

$$|f(x) - f(c)| = |f'(z)(x - c)| \le M|x - c| \le M(b - a),$$

thus by the triangle inequality, for any $x \in (c, b)$,

$$|f(x)| \le |f(x) - f(c)| + |f(c)| \le M(b - a) + |f(c)|.$$

Similarly, for any $x \in (a, c)$, $|f(x)| \leq M(b-a) + |f(c)|$. Therefore for any $x \in (a, b)$, $|f(x)| \leq M(b-a) + |f(c)|$, which is a finite constant. Hence f is bounded on (a, b).

(b) The converse does not hold. Consider $f(x) := \sqrt{x}$ defined on $x \in (0, 1)$. Then $f'(x) = \frac{1}{2\sqrt{x}}$ on (0, 1), which is unbounded. However, 0 < f(x) < 1 on (0, 1), hence f is bounded.

3. Define a function $f:[0,1] \to \mathbb{R}$ by

$$\begin{cases} x, \text{ if } x \in \mathbb{Q} \cap [0, 1] \\ -x, \text{ otherwise.} \end{cases}$$

Find the upper and lower integrals of f.

Proof. We claim that $\overline{\int}_0^1 f = \frac{1}{2}$ and $\underline{\int}_0^1 f = -\frac{1}{2}$:

For any partition $P = \{x_0 = 0, ..., x_N = 1\}$ of [0, 1], we first show that for each $1 \le i \le N$,

$$\sup_{[x_{i-1},x_i]} f = x_i$$

and similarly

$$\inf_{x_{i-1},x_i]} f = -x_i$$

For the former one, first by definition of f we immediately see that $f(x) \leq x_i$ for all $x \in [x_{i-1}, x_i]$, and therefore $\sup_{[x_{i-1}, x_i]} f \leq x_i$; On the other hand, fix any $\epsilon > 0$, by density theorem of rational numbers, there exists $y_i \in (x_i - \epsilon, x_i) \cap \mathbb{Q}$. Therefore, $x_i - \epsilon < f(y_i) < x_i$. Since $\epsilon > 0$ is arbitrary, we have

$$\sup_{[x_{i-1},x_i]} f = x_i$$

For the latter one the argument is analogous: by definition of f we immediately see that $f(x) \ge -x_i$ for all $x \in [x_{i-1}, x_i]$, and therefore $\inf_{[x_{i-1}, x_i]} f \ge -x_i$; On the other hand, fix any $\epsilon > 0$, by density theorem of irrational numbers, there exists $z_i \in (x_i - \epsilon, x_i) \cap (\mathbb{R} - \mathbb{Q})$. Therefore, $-x_i < f(z_i) < -x_i + \epsilon$. Since $\epsilon > 0$ is arbitrary, we have

$$\inf_{[x_{i-1},x_i]} f = -x_i.$$

Therefore, $U(f, P) = \sum_{i=1}^{N} x_i(x_i - x_{i-1}) = U(g, P)$ and $L(f, P) = \sum_{i=1}^{N} (-x_i)(x_i - x_{i-1}) = L(h, P)$, where $g, h : [0, 1] \to \mathbb{R}$ is given by g(x) = x and h(x) = -x.

Since g, h are continuous, they are Riemann integrable, i.e. $\overline{\int}_0^1 g = \int_0^1 x dx = \frac{1}{2}$ and $\underline{\int}_0^1 h = \int_0^1 (-x) dx = -\frac{1}{2}$. Finally, we compute $\overline{\int}_0^1 f$ and $\underline{\int}_0^1 f$:

$$\overline{\int}_{0}^{1} f = \inf_{P} U(f, P) = \inf_{P} U(g, P) = \overline{\int}_{0}^{1} g = \frac{1}{2}$$
$$\underline{\int}_{0}^{1} f = \sup_{P} L(f, P) = \sup_{P} L(h, P) = \underline{\int}_{0}^{1} h = -\frac{1}{2}$$

4. Define a function f on [0, 1] by

$$f(x) := \begin{cases} 1, \text{ if } x = \frac{1}{n}, n = 1, 2, \dots \\ 0, \text{ otherwise } . \end{cases}$$

Show that f is Riemann integrable and find $\int_0^1 f$.

Proof. It is reasonable to guess that $\int_0^1 f = 0$. Hence it suffices to show: for any $\epsilon > 0$, there exists a partition P such that $U(f, P) - L(f, P) < \epsilon$. But it is easy to see that L(f, P) = 0 for any partition P. Hence it suffices to show that $U(f, P) < \epsilon$, which also implies that $\int_0^1 f = 0$.

Let $\epsilon > 0$. Assume $\epsilon < 0.1$ without loss of generality. Let N be the least integer such that $N > \frac{1}{\epsilon}$. Note then $N \ge 10$. Consider the points $\frac{1}{k}, k = 1, 2, \ldots, N - 1$, and take

$$\delta := \min\left\{\frac{1}{N-2} - \frac{1}{N-1}, \frac{1}{N-1} - \frac{\epsilon}{2}\right\} \in \left(0, \frac{2}{N(N-1)}\right).$$

Consider the partition P given by:

$$0 = x_0 < \frac{\epsilon}{2} < \frac{1}{N-1} - \frac{\delta}{100} < \frac{1}{N-1} + \frac{\delta}{100} < \frac{1}{N-2} - \frac{\delta}{100} < \frac{1}{N-2} + \frac{\delta}{100} < \dots < \frac{1}{2} + \frac{\delta}{100} < 1 - \frac{\delta}{100} < 1 = x_n.$$

Then we can compute

$$U(f, P) = \sum_{i=1}^{n} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f(x)$$

= $(x_1 - x_0) \sup_{x \in [0, \frac{\epsilon}{2}]} f(x) + \sum_{i=2}^{n} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f(x)$
 $\leq \frac{\epsilon}{2} \cdot 1 + (N - 1) \cdot \frac{\delta}{50} \cdot 1$
= $\frac{\epsilon}{2} + \frac{(N - 1)\delta}{50}$
 $< \frac{\epsilon}{2} + \frac{1}{25N}$
 $< \epsilon.$