THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH2060B Mathematical Analysis II (Spring 2017) Solution to Midterm Examination

Tongou Yang and Yan Lung Li

1. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x):=\left\{\begin{array}{l}
x^{2}, \text { if } x \in \mathbb{Q} \\
0, \text { otherwise }
\end{array}\right.
$$

Show that $f^{\prime}(0)$ exists but $f^{\prime}(x)$ does not exist for any $x \neq 0$.
Proof. - We first show that $f^{\prime}(0)$ exists. (The term x^{2} suggests that $\left.f^{\prime}(0)=0\right)$. Since $f(0)=0$, it suffices to show that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=0
$$

Let $\epsilon>0$, and take $\delta:=\epsilon$. For any $|x|<\delta$, if $x \in \mathbb{Q}$, then

$$
\left|\frac{f(x)}{x}\right|=\left|\frac{x^{2}}{x}\right|=|x|<\epsilon .
$$

If $x \notin \mathbb{Q}$, then

$$
\left|\frac{f(x)}{x}\right|=\left|\frac{0}{x}\right|=0<\epsilon .
$$

This proves that $f^{\prime}(0)=0$.

- Next we show that for $x \neq 0, f^{\prime}(x)$ does not exist. It is easier to show that f is not continuous at x, hence not differentiable at x. By the sequential criterion it suffices to exhibit a sequence x_{n} converging to x but $f\left(x_{n}\right)$ does not converge to $f(x)$. We consider two cases.
- $x \in \mathbb{Q} \backslash\{0\}$. In this case, $f(x)=x^{2} \neq 0$. However, by density of irrational numbers, there exists a sequence $x_{n} \notin \mathbb{Q}$ so that $x_{n} \rightarrow x$. Thus $f\left(x_{n}\right)=0 \rightarrow 0 \neq f(x)$. Hence f is discontinuous at x.
- $\quad x \notin \mathbb{Q}$. In this case, $f(x)=0$. By density of rational numbers, take $x_{n} \in \mathbb{Q}$ so that $x_{n} \rightarrow x$. Thus $f\left(x_{n}\right)=x_{n}^{2} \rightarrow x^{2} \neq 0$, since $x \neq 0$. Hence f is discontinuous at x.

To conclude, $f^{\prime}(x)$ does not exist at $x \neq 0$.
2. Suppose f is differentiable on a bounded open interval (a, b).
(a) Show that if f is unbounded on the interval (a, b), then f^{\prime} is also unbounded on (a, b).
(b) Does the converse of part (a) hold?

Proof. (a) We prove by contradiction. Suppose f^{\prime} is bounded on (a, b). We have two different approaches to show that f is bounded on (a, b).

- Method 1: Since f^{\prime} is bounded on (a, b), let $M:=\sup _{x \in(a, b)}\left|f^{\prime}(x)\right|<\infty$. We show that f is Lipschitz continuous. Indeed, given $a<x<y<b$, since f is continuous on $[x, y]$ and differentiable on (x, y), by the mean value theorem, there is some $z \in(x, y)$ so that

$$
f(y)-f(x)=f^{\prime}(z)(y-x)
$$

But then

$$
|f(y)-f(x)|=\left|f^{\prime}(z)(y-x)\right| \leq M|y-x|
$$

showing that f is Lipschitz continuous on (a, b). Then f is in particular uniformly continuous on (a, b). By the uniform extension theorem, f can be continuously extended to $\tilde{f}:[a, b] \rightarrow \mathbb{R}$ so that \tilde{f} is uniformly continuous. In particular, \tilde{f} is bounded on $[a, b]$. In particular, f is bounded on (a, b).

- Method 2: Fix an arbitrary $c \in(a, b)$. For any $x \in(c, b)$, since f is continuous on $[c, x]$ and differentiable on (c, x), by the mean value theorem, there is some $z \in(c, x)$ so that

$$
f(x)-f(c)=f^{\prime}(z)(x-c)
$$

But then

$$
|f(x)-f(c)|=\left|f^{\prime}(z)(x-c)\right| \leq M|x-c| \leq M(b-a)
$$

thus by the triangle inequality, for any $x \in(c, b)$,

$$
|f(x)| \leq|f(x)-f(c)|+|f(c)| \leq M(b-a)+|f(c)|
$$

Similarly, for any $x \in(a, c),|f(x)| \leq M(b-a)+|f(c)|$. Therefore for any $x \in(a, b),|f(x)| \leq M(b-a)+|f(c)|$, which is a finite constant. Hence f is bounded on (a, b).
(b) The converse does not hold. Consider $f(x):=\sqrt{x}$ defined on $x \in(0,1)$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ on $(0,1)$, which is unbounded. However, $0<f(x)<1$ on $(0,1)$, hence f is bounded.
3. Define a function $f:[0,1] \rightarrow \mathbb{R}$ by

$$
\left\{\begin{array}{l}
x, \text { if } x \in \mathbb{Q} \cap[0,1] \\
-x, \text { otherwise }
\end{array}\right.
$$

Find the upper and lower integrals of f.

Proof. We claim that $\bar{\int}_{0}^{1} f=\frac{1}{2}$ and $\underline{\int}_{0}^{1} f=-\frac{1}{2}$:
For any partition $P=\left\{x_{0}=0, \ldots, x_{N}=1\right\}$ of $[0,1]$, we first show that for each $1 \leq i \leq N$,

$$
\sup _{\left[x_{i-1}, x_{i}\right]} f=x_{i}
$$

and similarly

$$
\inf _{\left[x_{i-1}, x_{i}\right]} f=-x_{i}
$$

For the former one, first by definition of f we immediately see that $f(x) \leq x_{i}$ for all $x \in\left[x_{i-1}, x_{i}\right]$, and therefore $\sup _{\left[x_{i-1}, x_{i}\right]} f \leq x_{i}$; On the other hand, fix any $\epsilon>0$, by density theorem of rational numbers, there exists $y_{i} \in\left(x_{i}-\epsilon, x_{i}\right) \cap \mathbb{Q}$. Therefore, $x_{i}-\epsilon<f\left(y_{i}\right)<x_{i}$. Since $\epsilon>0$ is arbitrary, we have

$$
\sup _{\left[x_{i-1}, x_{i}\right]} f=x_{i} .
$$

For the latter one the argument is analogous: by definition of f we immediately see that $f(x) \geq-x_{i}$ for all $x \in\left[x_{i-1}, x_{i}\right]$, and therefore $\inf _{\left[x_{i-1}, x_{i}\right]} f \geq-x_{i}$; On the other hand, fix any $\epsilon>0$, by density theorem of irrational numbers, there exists $z_{i} \in\left(x_{i}-\epsilon, x_{i}\right) \cap(\mathbb{R}-\mathbb{Q})$. Therefore, $-x_{i}<f\left(z_{i}\right)<-x_{i}+\epsilon$. Since $\epsilon>0$ is arbitrary, we have

$$
\inf _{\left[x_{i-1}, x_{i}\right]} f=-x_{i} .
$$

Therefore, $U(f, P)=\sum_{i=1}^{N} x_{i}\left(x_{i}-x_{i-1}\right)=U(g, P)$ and $L(f, P)=\sum_{i=1}^{N}\left(-x_{i}\right)\left(x_{i}-\right.$ $\left.x_{i-1}\right)=L(h, P)$, where $g, h:[0,1] \rightarrow \mathbb{R}$ is given by $g(x)=x$ and $h(x)=-x$.
Since g, h are continuous, they are Riemann integrable, i.e. $\int_{0}^{1} g=\int_{0}^{1} x d x=\frac{1}{2}$ and $\int_{0}^{1} h=\int_{0}^{1}(-x) d x=-\frac{1}{2}$.
Finally, we compute $\bar{\int}_{0}^{1} f$ and $\underline{\int}_{0}^{1} f$:

$$
\begin{aligned}
& \int_{0}^{1} f=\inf _{P} U(f, P)=\inf _{P} U(g, P)=\bar{\int}_{0}^{1} g=\frac{1}{2} \\
& \int_{0}^{1} f=\sup _{P} L(f, P)=\sup _{P} L(h, P)=\underline{\int}_{0}^{1} h=-\frac{1}{2}
\end{aligned}
$$

4. Define a function f on $[0,1]$ by

$$
f(x):=\left\{\begin{array}{l}
1, \text { if } x=\frac{1}{n}, n=1,2, \ldots \\
0, \text { otherwise }
\end{array}\right.
$$

Show that f is Riemann integrable and find $\int_{0}^{1} f$.

Proof. It is reasonable to guess that $\int_{0}^{1} f=0$. Hence it suffices to show: for any $\epsilon>0$, there exists a partition P such that $U(f, P)-L(f, P)<\epsilon$. But it is easy to see that $L(f, P)=0$ for any partition P. Hence it suffices to show that $U(f, P)<\epsilon$, which also implies that $\int_{0}^{1} f=0$.
Let $\epsilon>0$. Assume $\epsilon<0.1$ without loss of generality. Let N be the least integer such that $N>\frac{1}{\epsilon}$. Note then $N \geq 10$. Consider the points $\frac{1}{k}, k=1,2, \ldots, N-1$, and take

$$
\delta:=\min \left\{\frac{1}{N-2}-\frac{1}{N-1}, \frac{1}{N-1}-\frac{\epsilon}{2}\right\} \in\left(0, \frac{2}{N(N-1)}\right) .
$$

Consider the partition P given by:

$$
\begin{aligned}
0 & =x_{0}<\frac{\epsilon}{2}<\frac{1}{N-1}-\frac{\delta}{100}<\frac{1}{N-1}+\frac{\delta}{100}<\frac{1}{N-2}-\frac{\delta}{100}<\frac{1}{N-2}+\frac{\delta}{100} \\
& <\cdots<\frac{1}{2}+\frac{\delta}{100}<1-\frac{\delta}{100}<1=x_{n}
\end{aligned}
$$

Then we can compute

$$
\begin{aligned}
U(f, P) & =\sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \\
& =\left(x_{1}-x_{0}\right) \sup _{x \in\left[0, \frac{\epsilon}{2}\right]} f(x)+\sum_{i=2}^{n}\left(x_{i}-x_{i-1}\right) \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \\
& \leq \frac{\epsilon}{2} \cdot 1+(N-1) \cdot \frac{\delta}{50} \cdot 1 \\
& =\frac{\epsilon}{2}+\frac{(N-1) \delta}{50} \\
& <\frac{\epsilon}{2}+\frac{1}{25 N} \\
& <\epsilon .
\end{aligned}
$$

